

10th International Abalone Symposium

8-12th May 2018 | XIAMEN, China

PROGRESS AND PROSPECT FOR ABALONE RESEARCH AND INDUSTRY IN CHINA

Caihuan Ke, Kangsen Mai, Guofan Zhang

2018-5-8 Xiamen

Abalone aquaculture production in China

Data: China Fishery Statistical Yearbook

Abalone production in different provinces in 2016

Annual production ≈ 140,000 tons, value > 3 billion US Dollar each year.

1% production vs 15% value in mollusc farming

Data: China Fishery Statistical Yearbook 2017

Abalone farming in China

Abalone seed number stabilized around 7 billons in last 5 years

Data: China Fishery Statistical Yearbook

Why Fujian develop so quickly in recent years?

1. Excellent natural conditions:

Convenient culture environment, etc.

temperature

Many bays are suitable for sea-based grow-out

2. Abundant Seaweed resources:

The productions for Kelp and *Gracilaria* ranked 1st in China.

3. Genetic improvement and skillful culture techniques

Genetic improvement project supported by government since 2000

- 4. Skillful labors and update techniques
 - Low-cost seed production
 - Highly efficient sea-based culture systems

Update process: from 3 steps to 7 steps

Update process

Seed culture technology

Step 1: Hatchery and early juvenile (0-4 mm, 35-45 days)

Polythene membrane

Nursing pond

Plate with juveniles

Peeling off early juvenile abalone

Step 2: Intermediate rearing (4 -18mm,4-5 months)

Rearing ponds

Seeds with shell length about 2cm

Cement brick

Grow-out System

System 1 Land-based intensive farming

Basket size: $40 \times 30 \times 30$ cm

Rearing density: 20-30 inds/basket

Grow-out ponds

System 2 Sea-based farming system

Provided by Dr. Fucun Wu (IOCAS)

Diet of abalone

Diet for juvenile: artificial forage in serial Diet in grow-out : *Gracilaria* spp. and Kelp

"South-North Relay" for Pacific abalone aquaculture

Winter: in Southern China (Fujian)Summer: in Northern China (Shandong,Liaoning)

Advantages:

- --- Grow at comfortable temperature the
- whole year; Shorten the grow-out period
- ---- High survival rate in summer,

avoiding typhoon and high temperature

The further development of South-North relay mode

The South-north relay mode has been a common practice in China. The production was 9,000 tons in 2016 by this mode and it double in 2017.

Mode	Number of trips	Size	Starting time	Sales time	Purpose
S→N	1	large	spring	autumn	survival rate
S→N→S	2	medium	spring	next spring	large size abalone
$S \rightarrow N \rightarrow S \rightarrow N$	3	small	spring	next autumn	survival rate and large size abalone
N→S→N	2	small	autumn	next autumn	growth

S: South; N: North; The red sign indicated the dominant mode.

IMTA for abalone, kelp and sea cucumber

- a. Kelp longline culture
- b. Abalone net cages hanging vertically from longlines
- c. Sea cucumber Apostichopus japonicus added directly to the abalone cages

Provided by Prof. Jianguang Fang (YSFRI)

The advantages of IMTA system

NITROGEN DISSOLVED INORGANIC NITROGEN (NH₄) ABALONE KELP -60 g N ASSIMILATION FEED 103 g N Excretion Excretion 0.7 g N 42 g N 41 % 0.7 % Kelp Abalone Sea cucumber 42 kg FW 0.055 kg FW FAECES 1 ka FW DETRITUS 103 g N 85 % 19 g N 0.5 g N 100 % 18 % 0.5 % 15 % SEA 2.3 % 1.2 % 26 % Erosion?: CUCUMBER 0 % Feed loss Faeces Faeces 15 g N 26 g N 1.2 g N SEDIMENT PON 40 g N

IMTA system

The effective use of nutrient

Advantage: 1. It is beneficial to the environment, because it lowers emissions of faeces and detritus.

2. It can increase profits, about \$14,000 per acre, from \$ 8,000 per acre for only kelp culture to \$22,000 per acre for the IMTA system.

Products forms and Sales

 \diamond Majority are sold live to market and many cuisines are developed

 \diamond Processed products are steadily increasing \diamond Utilization of by-products are sprouting

Frozen

Canned

Artware

Taurine

Taurine

Provided by Prof. Minjie Cao (Jimei University)

Problems and Challenges

- Deterioration of culture environment (stocking density, red tide et al.)
- Seed quality degeneration
- Decline of disease resistance
- Summer mortality
- Market

H. diversicolor and H. discus hannai showed disparate susceptibility to Haliotid herpesvirus 1 (HaHV-1)

Experimental infection with three different methods (injection, immersion and cohabitation) showed similar results.

- *H. diversicolor* was highly susceptible to HaHV-1 infection, and suffered from 100% mortality with an acute process after challenge.
- H. discus hannai was resistant to HaHV-1 infection, and no clinical signs or mortalities were found after challenging with all three methods.

Mortality curve of *H. diversicolor* after challenge with different methods

The distribution of pustules on sick abalone

Provided by Prof. Jiangyong Wang

Toxicity with isolated dominant strain

0000000000

	BV2		Abalone			
Сс	oncentration (CFU/mL)	Total	Death	Mortality rate (%)		
1	8.7×10 ³	20	12	60		
2	8.7×10^4	20	15	75		
3	8.7×10^{5}	20	17	85		
4	8.7×10^{6}	20	18	90		
5	8.7×10^{7}	20	20	100		
control	0	20	0 0	0		

 $LD_{50} \approx 7.76 \times 10^5 \text{ CFU/mL}$

The foot morphology of sick (left) and normal (right) abalone (HE staining)

Novel varieties

Three novel varieties were conferred by Ministry of Agriculture and now were large-scale cultured in China.

水产新品种(2003)新生物医产等。2 啓 记 문· GS-02-004-2009 培育单位:厦门大学 该品种业经审定,根据农业部《水产原、良 种审定办法》,特发此证。

(2015) MA HH 27 W 24 9

H. diversicolor "Dongyou 1" In 2010 **Disease resistance**

Hybrid "Xipan abalone" In 2014 High temperature resistance

Pacific abalone

JP population

JJ line

KR population

Red shell line

Orange variety

We identified two major kinds of carotenoid in abalones (*Haliotis gigantea*) are Zeaxanthin and β -carotene.

The concentrations of zeaxanthin and β -Carotene for orange-variety were significantly higher than normal abalones.

Facilities

Family system

Selection system

Hybrid system

Parents improved system

Evaluation of stress

The lab for stress tolerance assessment

Sensor

Amplifier

Powerlab

The non-invasive method to measure heart rate

Heart beat rate and thermal tolerance

*. diameter = 20.0 cm, height = 9.5cm

The schematic drawing for measurement of ABT

Arrhenius break temperatures (ABT) was calculated based on cardiac performance to verify the abalone thermal tolerance and it had been proven to be a effective method.

The ABT for different lines of Pacific abalone

5

0

0

200

400

800

600 1.1.1

Time (min)

1000

1200

There were breakpoints observed when the oxygen or salinity declined

Quantitative analysis of shell shape

Genome assembly results of Pacific abalone

	Conti	g	Scaffold		
	Size (bp)	Number	Size (bp)	Number	
Total	1,245,295,745	349,844	1,279,837,536	249,837	
Longest	265,314	-	6,125,885	-	
Number>=2000	-	74,608	-	13,799	
N50 *	22,360	14,939	616,844	542	
N60	16,667	21,386	427,240	792	
N70	11,637	30,307	261,770	1,173	
N80	6,812	44,134	107,506	1,914	
N90	1,798	77,761	6,019	7,019	

A high-quality reference genome was assemblied spanning 1.28 Gb with contig N50 of 22 Kb and scaffold N50 of 617 Kb using SOAPdenovo approach.

Abalone genome landscape

3,531 assembled scaffolds were anchored on the 18 chromosomes and built a chromosome-anchored reference genome, covering about 1,038 Mb (81.09 %) of the assembled abalone genome.

Ongoing project: Genome-wide Association Selection for Pacific Abalone

Thank you and enjoy your time in Xiamen !

China Agriculture Research System 现代农业产业技术体系